Developing a Powerful yet Inexpensive Computational Infrastructure for the UT Dept. of Nuclear Engineering

David D. Dixon April 8, 2009

Overview

- Status of Existing Computational Infrastructure
- General Design Approach

- Description of System Hardware and Software
- Auxiliary Experiments
- Future Opportunities

THE UNIVERSITY of TENNESSEE

Status of Existing Infrastructure

- Single 20-CPU cluster
- Xeon 2.4 GHz processors (130nm, 65W TDP)
- ~73GB disk space
- Red Hat Linux, 2.4 series kernel
- 40GB hard drive in each node

General Design Approach

- Use commodity desktop hardware
- Utilize diskless nodes

KNOXVILLE

THE UNIVERSITY of TENNESSEE

- Freely available, open source software where possible
- Focus on energy efficiency, low construction cost, speed
- Consideration given to application software of interest at time of construction

Design Considerations

- Limited power and cooling available

 Test/identify energy efficient processors
- Limited space
 - Look to high-density configurations (e.g. multi-core CPUs, alternative cooling)
- Less than \$20k to spend

KNOXVILLE

 Desktop hardware instead of server hardware

CPU Evaluation

- Kill-A-Watt used to measure power consumption, power factor
- Testing at idle and at full load
- Where possible, the same motherboard was used for multiple CPUs
- 2 MCNP test cases used one ABTR full-core k-code model, one ORNL critical benchmark experiment

Intel Xeon 2.4 GHz

- 2.4 GHz
- Single Core
- 130nm
- 65W TDP

- \$235 each when purchased
- 2/\$10 on eBay today

THE UNIVERSITY of TENNESSEE

KNOXVILLE

AMD Athlon 64 X2 5200+

- 2.7 GHz
- Dual-Core
- 65nm
- 90W TDP
- \$130 each when purchased (1/08)
- ~\$55 today

AMD Phenom X4 9850

- 2.5 GHz
- Quad-core
- 65nm
- 125W TDP
- Released 3/08 at \$235
- ~\$160 today

Intel Core 2 Quad Q6700

- 2.66 GHz
- Quad-core
- 65nm
- 95W TDP
- Released 4/07 at \$533
- ~\$275 in May 2008
- ~\$215 today

Intel Core 2 Quad Q9300

- 2.5 GHz
- Quad-core
- 45nm
- 95W TDP
- Released 3/08 at \$266
- ~\$285 in May 2008
- ~\$240 today

Intel Core 2 Quad Q8200

- 2.33 GHz
- Quad-core
- 45nm
- 95W TDP
- Released 8/2008 at \$224
- ~\$165 today

Performance Summary

Processor	Run Time	Idle Power (W)	Full Load Power (W)	Energy Cons. (Wh)	CPU Cost
AMD Athlon X2 5200+	18:09	74	145	43.86	\$54.99
AMD Phenom X4 9850	07:12		279	33.46	\$154.99
Intel Core 2 Quad Q6700	06:28	63	127	13.69	\$214.99
Intel Core 2 Quad Q9300	05:24	45	97	8.73	\$239.99
Intel Core 2 Quad Q8200	05:48	45	91	8.8	\$165.99

KNOXVILLE

Overclocking Summary

Processor	Run Time	Idle Power (W)	Full Load Power (W)	Energy Cons. (Wh)
Intel Core 2 Quad Q6700 @ 2.66GHz	06:28	63	127	13.69
@ 3.06GHz	06:05	64	138	13.99
@ 3.15GHz	05:48	63	140	13.53
@ 3.25GHz	05:35	64	143	13.31
Intel Core 2 Quad Q9300 @2.5GHz	05:24	45	97	8.73
@3.00GHz	04:30	47	101	7.58
@3.15GHz	04:17	47	102	7.28
@3.00GHz w/Larger Heat Sink	04:30	47	93	6.98

Dual-Core Cooling

 Stock aluminum heat sink (top) unable to manage heat generated in 2U rack space

KNOXVILLE

 Replaced with copper heat-pipe heat sink (bottom)

KNOXVILLE

Phenom Cooling

- Stock heat sink too tall for 2U rack space with neighboring nodes
- No suitable substitute air-cooled substitute for high density nodes
- Water cooling as alternative

Phenom Cooling

 Heat-pipe heat sink replaced with water block (right)

KNOXVILLE

 Connected to pumped loop rejecting heat via large radiator

KNOXVILLE

Phenom Cooling

 5 full-size ATX motherboards operated with water cooling in 10U rack space

Water Cooling Decommissioned

- Availability of 45-nm Intel processors made system unnecessary
- Power consumption of Intel 45-nm quadcore less than AMD 65-nm dual-core

THE UNIVERSITY of TENNESSEE

Smaller Heat Sink with Smaller Process

- Reduced TDP in moving from 65-nm to 45-nm process led to smaller included heat sink
- Larger heat sink on 45nm CPU saves 8W
- Intel's 8088 used a 3,000 nm process, original Pentium was 800 nm

THE UNIVERSITY of TENNESSEE 🗐

New Cluster

- 10 dual-core AMD CPUs @ 2.7 GHz
- 5 quad-core AMD CPUs
 @ 2.5 GHz

- 4 quad-core Intel CPUs @2.7 GHz
- 2TB disk space
- Ubuntu 8.04 LTS Server Edition, 2.6 series kernel

Software Overview

Ubuntu 8.04 LTS Server Edition

KNOXVILLE

- Diskless Remote Boot Linux (DRBL)
- Ganglia

THE UNIVERSITY of TENNESSEE

- Webmin
- Application Software
 - CoreMaster 2, SCALE, MCNP, MCNPX, MonteBurns, POLCA, PHOENIX, NESTLE, Space07 Pointwise-Continuous Cross sections

Ubuntu/DRBL

 Ubuntu is a Debian-based Linux distribution maintained by Canonical

- Focus is on out-of-the-box hardware support, package manager
- Diskless Remote Boot Linux (DRBL) provides boot images and management of cluster compute nodes

Modifications to DRBL Script

THE UNIVERSITY of TENNESSEE 녁

- Addition of modules for hardware sensor data and CPU frequency scaling on compute nodes
- Implementation of on-demand CPU frequency scaling governor
 - This reduces clock speed at idle to as low as 1 GHz, reducing idle power consumption

Ganglia

KNOXVILLE

 Ganglia provides a web-based view of cluster status/health

Ganglia Mods

- Cron job to access motherboard's sensor data (fan speeds, temperatures, voltages) sent to Ganglia
 - Randomization
 needed to avoid
 network collisions
- System-average plots generated
- User metrics added

Webmin

Find: capac

Done

KNOXVILLE

- Web-based system administration tool
- Allows non-Linux savvy admin to perform user management tasks

🖕 Previous 📄 Next 😣 Highlight <u>a</u>ll 🔲 Mat<u>c</u>h case

Application Software

• MCNP, MCNPX, MonteBurns

KNOXVILLE

VirtualBox

THE UNIVERSITY of TENNESSEE

- Matlab
- CoreMaster 2, PHOENIX, POLCA
- NESTLE, SCALE
- ANSYS

Development Tools

- Intel, Portland Group, and GNU Fortran Compilers
- C++, Perl, PHP, MySQL, Java, Apache2, Tomcat

KNOXVILLE

• MPICH, LAM MPI

THE UNIVERSITY of TENNESSEE

THE UNIVERSITY of TENNESSEE

Future Development Opportunities

- MPI-compatible job scheduler
 - Include logic to power nodes on/off as needed
- Larger heat sinks to reduce energy use
- Higher density, mini-ITX (6" square) motherboards
 - May be able to mount as many as 6 quad-core motherboards in a single case
- Implement independent RAID network
 attached storage (NAS) device